

SMALL SIGNAL NPN TRANSISTOR

Туре	Marking	
BFS19	F2	

- SILICON EPITAXIAL PLANAR NPN TRANSISTOR
- MINIATURE PLASTIC PACKAGE FOR APPLICATION IN SURFACE MOUNTING CIRCUITS
- RF APPLICATION UP TO 100 MHz

ABSOLUTE MAXIMUM RATINGS

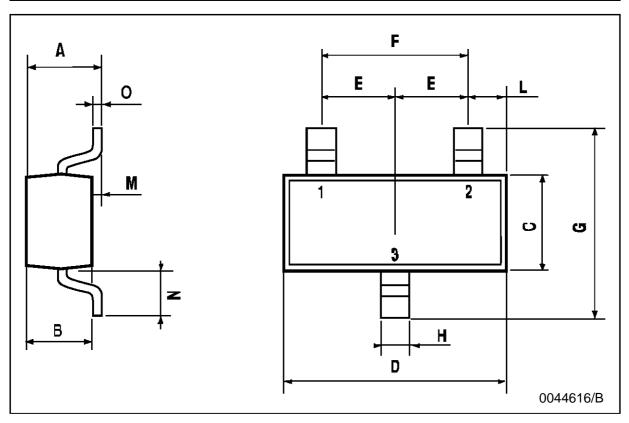
Symbol	Parameter	Value	Unit	
V_{CBO}	Collector-Base Voltage (I _E = 0)	30	V	
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	20	V	
V_{EBO}	Emitter-Base Voltage (I _C = 0)	5	V	
Ic	Collector Current	30	mA	
P _{tot}	Total Dissipation at T _c = 25 °C	200	mW	
T _{stg}	Storage Temperature	-65 to 150	°C	

May 1996 1/4

THERMAL DATA

R	thj-amb ●	Thermal	Resistance	Junction-Ambient	Max	620	°C/W
R	Rthj-SR ●	Thermal	Resistance	Junction-Substrate	Max	400	°C/W

Mounted on a ceramic substrate area = 15 x 15 x 0.6 mm


ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	ymbol Parameter Test Conditions		Min.	Тур.	Max.	Unit	
Ісво	Collector Cut-off Current (I _E = 0)	$V_{CB} = 20 \text{ V}$ $V_{CB} = 20 \text{ V}$ $T_j = 100 ^{\circ}\text{C}$			100 10	nA μA	
V _{(BR)CBO} *	Collector-Base Breakdown Voltage (I _E = 0)	Ic = 10 μA	30			V	
$V_{(BR)CEO}*$	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 2 mA	20			V	
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage (I _C = 0)	I _C = 10 μA	5			V	
V _{BE(on)} *	Base-Emitter On Voltage	I _C = 1 mA V _{CE} = 10 V	0.65		0.74	V	
h _{FE} *	DC Current Gain	$I_C = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$	65		225		
f⊤	Transition Frequency	$I_C = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 100 \text{ MHz}$		300		MHz	
ССВ	Collector Base Capacitance	$I_E = 0 \text{ mA}$ $V_{CB} = 10 \text{ V}$ $f = 1\text{MHz}$ (emitter grounded)		0.7		pF	
ССВ	Collector Base Capacitance	$I_E = 0 \text{ mA}$ $V_{CB} = 10 \text{ V}$ $f = 1\text{MHz}$ (emitter open)		1		pF	
NF	Noise Figure	$I_{C} = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 0.2 \text{ MHz}$ $G_{g} = 2 \text{ mS}$		1.5		dB	
NF	Noise Figure	$I_{C} = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 1 \text{ MHz}$ $G_{g} = 1.6 \text{ mS}$		1.2		dB	
NF	Noise Figure	I _C = 1 mA V _{CE} = 10 V f = 100 MHz G _g = 10 mS		4		dB	
NFC	Mixer Noise Figure	$I_{C} = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 0.2 \text{ MHz}$ $G_{g} = 0.6 \text{ mS}$		3		dB	
NFC	Mixer Noise Figure	$I_{C} = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 0.2 \text{ MHz}$ $G_{g} = 1.2 \text{ mS}$		2		dB	
G_ce		$I_C = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 10 \text{ MHz}$		6		μS	

^{*} Pulsed: Pulse duration = 300 μ s, duty cycle \leq 2 %

SOT-23 MECHANICAL DATA

DIM.	mm			mils			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	0.85		1.1	33.4		43.3	
В	0.65		0.95	25.6		37.4	
С	1.20		1.4	47.2		55.1	
D	2.80		3	110.2		118	
Е	0.95		1.05	37.4		41.3	
F	1.9		2.05	74.8		80.7	
G	2.1		2.5	82.6		98.4	
Н	0.38		0.48	14.9		18.8	
L	0.3		0.6	11.8		23.6	
M	0		0.1	0		3.9	
N	0.3		0.65	11.8		25.6	
0	0.09		0.17	3.5		6.7	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication superseds and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\hbox{@ }1996\ \text{SGS-THOMSON}\ \text{Microelectronics}$ - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

